Shotgun Proteomics

Measurement of Peptides by Microcapillary Liquid Chromatography Tandem Mass Spectrometry

Acquiring Mass Spectrometry Data of Peptides

 Peptides from the column are ionized and transmitted into the vacuum system and trapped in the mass spectrometer

Acquiring Mass Spectrometry Data of Peptides

- Peptides from the column are ionized and transmitted into the vacuum system and trapped in the mass spectrometer
- Peptides are selectively ejected by their mass to produce a mass spectrum
- The instrument automatically selects a peptide for further analysis

Acquiring a Fragmentation Spectrum

• The trap is then refilled

Acquiring a Fragmentation Spectrum

- The trap is then refilled
- All peptides are ejected from the trap except peptides with the predetermined mass
- The energy of the isolated peptide is increased resulting in collisions with a gas

Acquiring a Fragmentation Spectrum

- The collisions result in structure specific fragments
- The fragments are then selectively ejected to produce a tandem mass spectrum

<u>Abundance</u>			
	m	/z	

- 100 µm i.d. fuse silica
- Tip is pulled to $\sim 5 \ \mu m$ I.D.

- 100 µm i.d. fuse silica
- Tip is pulled to $\sim 5 \ \mu m$ I.D.
- Pack with C18 material 1st

- 100 µm i.d. fuse silica
- Tip is pulled to $\sim 5 \ \mu m$ I.D.
- Pack with C18 material 1st
- Pack with SCX material 2nd

- 100 µm i.d. fuse silica
- Tip is pulled to $\sim 5 \ \mu m$ I.D.
- Pack with C18 material 1st
- Pack with **SCX** material 2nd
- Peptide digest is loaded offline

- 100 µm i.d. fuse silica
- Tip is pulled to $\sim 5 \ \mu m$ I.D.
- Pack with C18 material 1st
- Pack with **SCX** material 2nd
- Peptide digest is loaded offline

• **Step 1** – Reverse Phase Gradient

- Step 1 Reverse Phase Gradient
- Step 2 Salt Pulse

- **Step 1** Reverse Phase Gradient
- Step 2 Salt Pulse

- **Step 1** Reverse Phase Gradient
- Step 2 Salt Pulse
- **Step 3** Reverse Phase Gradient
- Step 4 Increase Salt Pulse
- Repeat

H₂O

MeCN NH₄OAc

µLC/µLC/MS/MS of *C. elegans* Peptides

MS/MS Spectra: 281,484 Peptides Identified: 8,103 Proteins Identified With >95% Confidence: 2,346

Fractionation to Improve the Coverage of Proteins Involved in Insulin / IGF-1 Signaling

Rev Pł	0 Proteins Identified that are Known to be Involved in the Insulin / IGF-1 Signaling Pathway					
10 Fr <mark>a</mark> ↓ 10 Muo	ctions dPITs	8 Fractions 8 MudPITs	10 Fractions ↓ 10 MudPITs	-		

>6,000,000 MS/MS Spectra, 21,264 Unique Peptide Identifications, and 4,373 Unique Protein Identifications

Targeted Proteomics using nanoLC-hSRM-MS

Precursor	Ion	>	Product	Ion	SF
TGASEAVPSE	lgk	>		GK	1x10 ⁻¹ -1x8 -10x8 -10x9 -2x10 ⁻¹ -2x10 ⁻¹ -2x10 ⁻¹ -2x10 ⁻¹
TGSAEAVPSE	lgk	>	E	EGK	2 2 3 3 2 2 3 3 2 2 1 0 1 2 2 1 0 1 2 2 1 0 1 2 1 2 1 2
TGSAEAVPSE	lgk	>	SE	EGK	^{x10⁴} ^{9x10²} ^{3x10²} ₀ ₃₂ ³³
TGSAEAVPSE	lgk	>	PSE	EGK	^{2x10⁴} ¹ / _{1x10⁴} ² / _{4x10³} ⁴ / ₃₂ ³³
TGSAEAVPSE	lgk	>	VPSE	EGK	st10 ³ 3x10 ³ 3x2 33
TGSAEAVPSE	lgk	>	AVPSE	EGK	^{x10°} ^{9x10°} ^{3x10°} ⁰ ³² ³³
TGSAEAVPSE	lgk	>	EAVPSE	EGK	stu ³ 4x10 ³ 2x10 ² 32 33
TGSAEAVPSE	lgk	>	AEAVPSE	EGK	^{3x10'} ^{2x10'} ^{1x10'} ⁰ ³² ³³
TGSAEAVPSE	IGK	>	SAEAVPSE	EGK	^{3x10⁶} ² ^{2x10⁶} ³ ¹ ¹ ¹

SRM Chromatograms

Synthetic Peptide Standards

Measurement of Absolute Levels of DAF-16 and AKT-1 During Development Using Standard Addition

General Approach for Targeted Identification of Proteins by hSRM

General Approach for Targeted Identification of Proteins by hSRM

Troponin-C: Regulation Protein of Contraction

