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Achieving information content of satisfactory breadth and depth

remains a formidable challenge for proteomics. This problem is

particularly relevant to the study of primary human specimens,

such as tumor biopsies, which are heterogeneous and of finite

quantity. Here we present a functional proteomics strategy that

unites the activity-based protein profiling and multidimensional

protein identification technologies (ABPP-MudPIT) for the

streamlined analysis of human samples. This convergent

platform involves a rapid initial phase, in which enzyme activity

signatures are generated for functional classification of samples,

followed by in-depth analysis of representative members from

each class. Using this two-tiered approach, we identified more

than 50 enzyme activities in human breast tumors, nearly a

third of which represent previously uncharacterized proteins.

Comparison with cDNA microarrays revealed enzymes whose

activity, but not mRNA expression, depicted tumor class,

underscoring the power of ABPP-MudPIT for the discovery of new

markers of human disease that may evade detection by other

molecular profiling methods.

Postgenomic research promises to deliver humankind into the age
of molecular medicine, where diseases are diagnosed and treated
through the detection and pharmacological targeting of pathology-
linked proteins1. The success of this biomedical vision hinges on the
rapid translation of genomic information into the discovery of new
protein biomarkers and therapeutic targets. Proteomics aims to
facilitate this process by developing new methods for the parallel
analysis of many proteins in samples of high biological complexity2.

To date, several strategies have emerged for the large-scale
discovery of differentially expressed proteins in cells, tissues and
fluids, including two-dimensional gel electrophoresis (2DE)3,
liquid chromatography–mass spectrometry (LC-MS; for example,
isotope-coded affinity tagging (ICAT)4 and multidimensional-
protein identification technology (MudPIT)5) and MS-based pro-
teomic pattern analysis6,7. A survey of the data acquired using each
of these approaches reveals an intriguing paradox. Multidimen-
sional separation methods have remarkable sensitivity and

resolution, facilitating the identification of low-abundance proteins
in complex samples8,9. These techniques, however, are time-
consuming (many hours per sample), difficult to perform in
parallel and require large quantities of proteome (B1 mg or
greater) for optimal analysis. Alternative proteomic approaches
have emerged that have greater throughput (matrix-assisted laser
desorption ionization (MALDI) imaging6 and surface-enhanced
laser desorption ionization time-of-flight (SELDI-TOF)7 spectro-
metry), albeit at the expense of sensitivity. Furthermore, each of
these methods, by focusing on measurements of protein expression,
provides only an indirect readout of protein activity, which is
regulated by a myriad of post-translational events in vivo10.

The troublesome trade-off between the breadth and depth of
information procurable by different techniques has frustrated
efforts to implement an efficient, systematic strategy for high-
content proteomics. These concerns are particularly relevant to the
study of primary human specimens, which are often heterogeneous
and of limited quantity11, and therefore mandate interrogation by
proteomic methods that can achieve both high throughput (to deal
with sample heterogeneity) and sensitivity (to identify rarely
expressed and post-translationally regulated proteins in samples
of finite amount).

To address these important issues, we have introduced a chemical
technology, referred to as activity-based protein profiling
(ABPP)12,13 that uses active site–directed probes to read out the
functional state of many enzymes directly in whole proteomes.
ABPP probes selectively label active enzymes, but not their inactive
(for example, zymogen or inhibitor-bound) forms, facilitating the
characterization of changes in enzyme activity that occur without
corresponding alterations in protein or transcript expression14,15.
Additionally, because ABPP probes label enzymes based on shared
catalytic properties rather than mere expression level, they provide
exceptional access to low-abundance portions of the proteome,
which can be read out even in simple formats like one-dimensional
gel electrophoresis (1DE)14. Using such 1DE-ABPP methods, hun-
dreds of proteomes can be analyzed per day by a single academic
group. These features have allowed the routine application
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of ABPP to many biological samples in parallel, permitting, for
example, the classification of human cancer cell lines into pheno-
typically relevant groups based on their shared enzyme activity
profiles14. Nonetheless, despite these valuable attributes, the inher-
ent resolution and sensitivity limits of 1DE have, to date, precluded
comprehensive access to many of the enzyme activities present in
individual proteomic samples.

Here we present an advanced platform that unites the ABPP and
MudPIT technologies, providing a general and efficient route for
achieving both breadth and depth in functional proteome analysis.
We apply this integrated approach to more than 30 primary human
breast tumor and normal breast specimens, and find several
enzyme activities that are elevated in specific breast tumor classes.

RESULTS
A tiered platform for high-content functional proteomics
For the efficient analysis of large numbers of primary human tissue
specimens, we envisaged a two-tiered platform (Fig. 1). In a rapid
initial phase, 1DE-ABPP would be used to generate enzyme activity
signatures for the functional classification of proteomic samples
(phase I). ABPP-MudPIT would then be performed on representa-
tive members of each class to provide an in-depth analysis of the
enzyme activities present in these samples (phase II). The success of
this integrated strategy hinges on several key issues. First, gel-based
enzyme activity profiles need to provide sufficient information to
permit proper biological classification of human samples. Addi-
tionally, this initial phase of proteome analysis should apply to any
tissue specimen, even those of very limited quantity. In the second
phase, ABPP-MudPIT experiments need to be quantitative, such
that the relative levels of enzyme activities can be determined with
confidence. Inspired by recent evidence suggesting a linear relation-
ship between a protein’s abundance and its degree of sampling
during an LC–tandem MS (LC-MS/MS) run16,17, we proposed that

spectral counting of probe-enriched enzymes might address this
final issue. We set out to test this integrated ABPP-MudPIT plat-
form by comparatively profiling a set of 33 primary human breast
tumor and normal breast tissue biopsies. Clinical parameters such
as estrogen receptor (ER) and progesterone receptor (PR) status
were determined for tumor samples to assist in the interpretation of
proteomic profiles (see Supplementary Table 1 online for a list of
clinical data).

Phase I: rapid analysis of breast tumors by 1DE-ABPP
For tumor profiling experiments, we used fluorophosphonate
(FP)-based ABPP probes that target the serine hydrolase super-
family14,18 (see Supplementary Fig. 1 online for structures of FP
probes). Serine hydrolases are a large and diverse class of enzymes
that comprise about 1% of the human proteome, including several
enzymes implicated in cancer19–21.

We carried out the phase I analysis using 5–10-mm frozen tissue
sections, portions of which were also allocated for cDNA micro-
array experiments to allow a direct comparison of transcript and
enzyme activity profiles. Homogenized tissue sections (soluble and
membrane; 12 mg protein/sample) were treated with a rhodamine-
tagged FP probe (FP-rhodamine (2 mM); Supplementary Fig. 1)
and analyzed by 1DE-ABPP. Equivalent probe-labeled samples were
also treated with PNGaseF to generate ‘deglycosylated’ proteomes,
which, when analyzed in comparison to their native counterparts,
enhances the detection of some enzymes14.

Gel profiles of membrane enzyme activities from representative
breast tissue samples are shown in Figure 2a, where brackets
highlight examples of enzymes elevated in tumors (see Supple-
mentary Fig. 2 online for a complete set of tissue profiles). 1DE
analyses typically resolved about 15 probe-labeled enzyme activities
per tumor sample, which generated a data set that was too large for
manual analysis (total number of enzyme activities, B2,000:
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Figure 1 | Integration of the ABPP and MudPIT methods for high-content functional proteomics of primary human specimens. A two-tiered platform is

presented. In the first phase, proteomic samples are treated with a rhodamine (Rh)-tagged ABPP probe and resolved by 1DE to provide enzyme activity

signatures (visualized by in-gel fluorescence scanning). Hierarchical clustering of these molecular profiles is then used for the functional classification of

samples. In the second phase, representative members of each sample class are treated with a biotinylated ABPP probe (B) and the labeled proteins are enriched

by binding to avidin-conjugated beads and subjected to on-bead trypsin digestion. The resulting tryptic peptide mixtures are analyzed by multidimensional

LC-MS (MudPIT), and the levels of specific enzyme activities are estimated by spectral counting16,17.
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15 enzymes � 2 proteomic fractions (membrane and soluble)
� 2 glycosylation states (glycosylated and deglycosylated) � 33
samples). Therefore, a suite of computational programs was devel-
oped to automate the alignment and quantification of 1DE data.
Because our goal was to rapidly compare proteomes before the
time-consuming step of target identification, each probe-labeled
enzyme was identified solely by its predicted molecular mass (see
Supplementary Fig. 3 online for a representative gel showing
molecular mass annotations for probe-labeled enzymes). The
relative activity levels of each enzyme were then calculated across
all proteomic samples, and the resulting normalized data set was
analyzed with an unsupervised hierarchical clustering algorithm.

Breast tissue specimens clustered into five major groups based on
their membrane enzyme activity profiles (Fig. 2b), at least three of
which represented clinically relevant breast tissue subtypes: normal

breast, ER(+)/PR(+) breast cancer and ER(�)/PR(�) breast
cancer. The other two groups contained a mixture of tumors that
were positive for either ER or PR, as well as some double-positive
and double-negative tumors. In contrast, and consistent with
previous findings from ABPP of human cancer cell lines14, serine
hydrolase activity profiles of the soluble proteome did not effec-
tively differentiate the breast tissue specimens and, therefore, were
not examined further. A comparison of the membrane ABPP
dendrogram with one generated by cDNA microarray analysis
(Y.J., M.N. and S.S.J., unpublished data) revealed a strong correla-
tion (Fig. 2c). For example, six of the eight tumors found in the
ABPP ER(�)/PR(�) group were also part of the ER(�)/PR(�)
group defined by cDNA microarrays. The ABPP-derived
ER(+)/PR(+) tumor group also had five specimens in common
with the cDNA microarray ER(+)/PR(+) group. Finally, two
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Figure 2 | Enzyme activity signatures of primary human breast tumors and normal breast tissue. (a) Representative gel showing the membrane serine hydrolase

activity profiles of breast tissue specimens treated with FP-rhodamine before and after deglycosylation with PNGaseF (fluorescent image shown in grayscale).

Representative enzyme activities elevated in tumor specimens are indicated. See Supplementary Figure 2 for a complete set of enzyme activity profiles of the

breast tissue specimens. (b) Hierarchical clustering analysis of membrane enzyme activity profiles. The intensity of blue color scales directly with the relative

activity of each enzyme among the specimens. Enzyme activities are designated by their predicted molecular mass (kDa) and their presence in glycosylated

(G) or deglycosylated (DG) samples. Sample names and dendrogram are color-coded by ER/PR status; double-positive (light blue), double-negative (red), mixed

positive and negative (black), and unknown (dark blue). Normal samples are in green. (c) Comparison of the classifications of breast specimens by enzyme

activity (top) and gene expression (bottom) profiles.
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tumors of unknown ER and PR status (KR002 and KD145) had
profiles similar to ER(+)/PR(+) tumors in both ABPP and cDNA
microarray experiments, suggesting that they may belong to this
breast cancer class.

Results from this initial phase indicated that 1DE-ABPP could
generate enzyme activity profiles sufficiently rich in information
content to classify primary human tumor specimens into biologi-
cally relevant subtypes, and do so using only minute quantities of
proteome (12–25 mg protein/sample). We next transitioned to the
second phase of the ABPP-MudPIT platform, in which individual
members of each breast cancer class were selected for in-depth
proteomic profiling.

Phase II: in-depth analysis of tumors by ABPP-MudPIT
For the second phase, two tumor specimens were selected from
each of the following tissue classes: normal breast, ER(+)/PR(+)
tumors and ER(�)/PR(�) tumors. These specimens were chosen
because they were available in sufficient quantity for in-depth
analysis (0.75 mg protein/sample) using an advanced gel-free
version of ABPP that integrates this method with MudPIT.
The ABPP-MudPITapproach involves first treatment of proteomes
with a biotinylated activity-based probe (for example, FP-biotin;
Supplementary Fig. 1), and then enrichment of probe-labeled

proteins using avidin-conjugated beads, on-bead trypsin digestion
and multidimensional LC-MS/MS analysis of the resulting tryptic
peptide mixture (Fig. 1, lower scheme). We expected ABPP-
MudPIT to have several advantages over gel-based methods for
in-depth proteome analysis, including enhanced resolution (owing
to multidimensional separation), sensitivity (owing to affinity
enrichment of probe-labeled targets) and coupled target detection
and identification. Additionally, we considered that the relative
quantity of enzyme activities could be estimated by ABPP-MudPIT
using spectral counting methods16,17.

Using ABPP-MudPIT, we identified over 50 serine hydrolase
activities in membrane proteomes, the vast majority of which were
not observed in control reactions, in which the FP-biotin probe was
left out. These enzymes included proteases, lipases, esterases and at
least 15 uncharacterized hydrolases (see Supplementary Table 2
online for a full list of enzymes). In addition to this diverse
collection of serine hydrolases, several proteasome subunits (b1,
4–7 and 9) were also identified in probe-treated, but not in control
samples, suggesting that this class of amino-terminal threonine
proteases may also be susceptible to specific labeling by FP reagents.

For comparative quantitation, the spectral counts for each
hydrolase were averaged for the two samples from each breast
cancer class, and only those enzymes that had greater than a

threefold difference in spectra number
(‘activity’) in one tissue class relative to the
other two were considered of potential inter-
est. Based on these criteria, several enzymes
were identified that had altered levels of
activity among the breast cancer specimens
(Table 1). For example, three enzyme activ-
ities, fibroblast activation protein (FAP or
seprase), KIAA1363 and platelet-activating
factor acetylhydrolase 2 (PAF-AH2) were
elevated in ER(�)/PR(�) tumors compared
to either ER(+)/PR(+) tumors or normal
breast tissue. Conversely, multiple enzyme
activities were higher in normal breast,
including thrombin, dipeptidylpeptidase
IV (DPPIV) and hormone-sensitive lipase
(HSL). Finally, two hydrolase activities (fatty
acid synthase and carboxylesterase 1 (CE1))

Table 1 | Enzymes with differential activity among breast tumor samples, as determined by ABPP-MudPITa

Spectral counts

Normal (N) ER(�)/PR(�) (DN) ER(+)/PR(+) (DP) Relative activity

BC151 BC156 Average BC45 BC48 Average BC35 BC56 Average DN/N DN/DP DP/N

KIAA1363b 10 11 10 53 105 79 14 37 25 7.9 3.2 2.5

FAPb 7 5 6 60 86 73 13 17 15 12 4.9 2.5

PAF-AH2b 5 0 2 18 18 18 5 2 3 9 6 1.5

CE1c 571 1,273 922 30 61 45 64 81 72 0.05 0.6 0.08

HSLc 125 113 119 5 15 10 30 0 15 0.08 0.7 0.1

LPLc 22 16 19 0 0 0 0 0 0 o0.05 – o0.05

DPPIVc 15 12 13 0 2 1 3 0 1 0.08 1 0.08

Thrombinc 17 38 27 0 0 0 0 0 0 o0.04 – o0.04

aEnzymes that had greater than threefold differences in activity in one tissue class relative to the other two classes are listed. Average values are rounded down to the nearest integer value. LPL, lipoprotein
lipase. For a complete list of enzyme activities identified by ABPP-MudPIT, see Supplementary Table 2. bEnzymes elevated in ER(�)/PR(�) tumors. cEnzymes elevated in normal breast. DN, double negative;
DP, double positive.
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Figure 3 | Comparison of enzyme activity levels measured by 1DE-ABPP and MudPIT-ABPP. (a,b) Similar

relative levels of FAP (a) and KIAA1363 (b) were estimated by 1DE-ABPP and MudPIT-ABPP in the normal

breast, ER(+)/PR(+) tumor and ER(�)/PR(�) tumor samples. Bars represent the average activity levels of

the two samples examined for each breast tissue class: BC151, BC156 (normal); BC35, BC56 (ER(+)/

PR(+)); BC45, BC48 (ER(�)/PR(�)).
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were identified in both probe-treated and control reactions, but
their spectral counts were approximately tenfold higher in the
former samples (Supplementary Table 2). As these enzymes also
had the highest overall spectral counts in probe-treated samples,
they likely represent abundant active proteins specifically labeled by
FP probes.

The reproducibility of ABPP-MudPITwas evaluated by analyzing
a single ER(�)/PR(�) tumor (BC48) in triplicate and averaging the
data sets. The activities of more than 80% of the enzymes identified
in this tumor (34 of 41) were measured with a standard error of the
means (s.e.m.) of o30% (Supplementary Table 3 online). If the
lowest-abundance targets were excluded (that is, enzymes with an
average spectrum count of less than ten), then greater than 90% of
the remaining enzyme activities (23 of 24) were quantified with a
s.e.m. of o30%, and greater than 80% (21 of 24) were quantified
with a s.e.m. of o20%. These results indicate that ABPP-MudPIT
has good reproducibility and is suitable for the comparative
quantitation of enzyme activities between samples, especially if
interpretations are restricted to relatively large–fold differences in
activity (for example, threefold or greater).

We sought to corroborate our spectral counting data with an
independent method. Re-examination of the 1DE-ABPP data
identified a set of three glycosylated enzyme activities that were
highly elevated in the ER(�)/PR(�) breast tumors (95, 47 and
45 kDa). These targets were enriched using FP-biotin and avidin
chromatography, separated by SDS-PAGE, digested in-gel with
trypsin and identified by LC-MS/MS analysis as FAP (95 kDa)
and two forms of KIAA1363 (47 and 45 kDa). The two forms of
KIAA1363 reflected different glycosylation states, as they were
converted into a single lower molecular mass species upon treat-
ment with PNGaseF (43 kDa, Fig. 2a). Thus, both 1DE-ABPP and
MudPIT-ABPP identified FAP and KIAA1363 as enzyme activities
elevated in ER(�)/PR(�) breast tumors. Notably, each proteomic

method provided a similar estimate of the
relative activity levels of these hydrolases
across breast tissue specimens (Fig. 3). Con-
sidering that signals for most of the other
differentially expressed enzyme activities
shown in Table 1 were not discernible by
1DE-ABPP, these data highlight the
impressive increase in information content
garnered by higher-resolution ABPP-Mud-
PIT experiments.

We next compared the relative activity
levels of KIAA1363 and FAP to their gene
expression profiles as measured by cDNA
microarrays across the entire set of breast
tumor samples. We observed a good corre-
lation for FAP: ER(�)/PR(�) tumors had
both high activity and transcript levels of
this protease (Fig. 4a). In contrast, the
activity and transcript profiles for
KIAA1363 were largely uncorrelated
(Fig. 4b), suggesting that this enzyme activ-
ity may be regulated by post-transcriptional
mechanisms in breast cancer. Finally, a sur-
vey of the gene expression patterns of
enzyme activities enriched in normal breast
indicated that HSL and CE1, but not throm-

bin, had good correlation between their respective transcript and
activity levels across the set of specimens analyzed by ABPP-
MudPIT (Supplementary Fig. 4 online).

DISCUSSION
Here we have presented a two-tiered functional proteomic
strategy that integrates the ABPP and MudPIT methods for the
streamlined analysis of primary human specimens. First-phase
enzyme activity signatures allowed the logical selection of repre-
sentative members of breast tumor classes for in-depth proteomic
analysis. Notably, these 1DE-ABPP studies required minimal
quantities of sample (12–25 mg of protein per sample), indicating
that they should be applicable to a wide range of primary human
specimens. In the future, other high-throughput and sample-
conserving techniques could be considered for phase I analysis,
including a recently described capillary electrophoresis approach
for ABPP22.

The second phase exploited the exceptional sensitivity and
resolution of multidimensional LC-MS/MS (MudPIT), while at
the same time preserving the high-content functional information
procured by ABPP. ABPP-MudPIT identified more than 50 enzyme
activities in breast tumor samples, including three enzymes that
were highly elevated in ER(�)/PR(�) cancers: FAP/seprase, a cell
surface-expressed protease of the dipeptidylpeptidase (DPP) clan23;
PAF-AH2, a lipase that degrades the endogenous signaling mole-
cule PAF24; and KIAA1363, an integral membrane hydrolase of
unknown function. Comparisons of ABPP and cDNA microarray
results revealed that, for certain enzymes (for example, KIAA1363)
activity and mRNA levels were largely uncorrelated. These findings
underscore the versatility of ABPP-MudPIT, which can be
applied to any proteomic fraction to discover disease-associated
enzyme activities that may evade detection by other molecular
profiling methods.
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Figure 4 | Comparison of activity and mRNA expression levels for FAP and KIAA1363. (a) A significant

correlation between FAP activity and mRNA levels was observed across the breast tumor samples

(Pearson’s correlation coefficent R ¼ 0.55, P o 0.001). (b) Activity and mRNA levels for KIAA1363 were

not significantly correlated across the breast tumor samples (R ¼ 0.30, P 4 0.10). The mRNA expression

data represent the logarithm values of signals relative to a reference standard (Universal Human Reference

RNA, Stratagene). For the heat maps, the logarithm values of both relative enzyme activity (0–100%)

and mRNA expression were centered at their respective mean and scaled to between �1 and 1 to

enhance visualization.
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The discovery of a set of enzyme activities elevated in
ER(�)/PR(�) tumors is notable because these tumors are generally
regarded as the most aggressive form of breast cancer and
are often refractory to conventional treatment25. FAP, which is
elevated in expression in several human cancers26–28, has
recently been shown to promote breast tumor growth in animal
models20. Less is understood about the roles PAF-AH2 and
KIAA1363 might have in cancer pathogenesis, although
we have found that the latter enzyme activity is elevated in invasive
cancer lines from several different tumor types14. Testing the
function of new cancer-associated enzymes like KIAA1363
will likely require the development of selective inhibitors for
these proteins, a goal that may be facilitated by competitive
ABPP methods29.

ABPP-MudPIT has some limitations that should be noted. First,
the second phase of analysis still requires relatively large quantities
of proteome. We were able to circumvent this problem because
sufficient amounts of representative members of each tumor class
were available for MudPIT analysis. In cases in which none of the
individual human specimens are of adequate quantity, members of
each sample class could be pooled prior to analysis by ABPP-
MudPIT. Such an approach might offer the additional advantage of
enriching for enzyme activities shared among related samples,
while diminishing the signal intensities of proteins with large
sample-to-sample variation. A second shortcoming of ABPP-
MudPIT is that neither of its core technologies appears suitable
for direct implementation in the clinic. Emerging antibody micro-
array formats for ABPP30 may eventually address this issue. Finally,
in this study, we have focused on the proteomic analysis of one
enzyme class, the serine hydrolases. As ABPP probes are now
available for more than a dozen enzyme families31–36, it is impor-
tant that ABPP-MudPIT also accommodate the analysis of these
additional enzymes without a significant increase in sample
requirement. We anticipate that this objective may be accomplished
in the second phase of analysis, in which multiple probes could be
added to individual proteomic samples to profile several enzyme
classes concurrently. In this manner, ABPP-MudPIT should
approach the ultimate goal of providing a universal platform for
the comprehensive analysis of enzyme activities in any primary
human specimen.

METHODS
Patients and tumor specimens. A total of 28 breast tumors (all
ductal) and 5 normal breast tissue specimens were obtained from
33 individuals. Specimens came from either the Stanford Hospital
(designated BC) or Seoul National University College of Medicine
(designated KD). Cases were accrued in accordance with local
institutional review board guidelines. The distribution of cases
according to patient source, lymph node status, tumor grade,
patient age, the expression of hormone receptors (ER and PR) and
other prognostic markers, are listed in Supplementary Table 1.
For proteomic studies, tumor specimens were obtained as
5–10-mm frozen sections (B4–6 sections per tumor) which
provided, on average, B60–100 mg of total protein per sample.
Some tumor specimens, as well as normal breast tissue, were also
obtained as larger frozen blocks of tissue that provided greater
quantities of protein (B1–3 mg). All samples were frozen in either
liquid nitrogen or on dry ice within 20 min after devascularization
and stored at �80 1C before proteomic or genomic analysis.

1DE-ABPP of breast tissue specimens. Tumor and normal breast
specimens were processed and analyzed by 1DE-ABPP as described
in Supplementary Methods. To increase the throughput of gel
data analysis, an automated procedure was developed using in-
house computer programs and commercial software (see Supple-
mentary Methods for more details). Fluorescence intensity signals
(integrated optical density; IOD) for each probe-labeled protein
were compared across all samples; the highest intensity value was
defined as 100%, and intensities of this enzyme activity observed
in the other samples were normalized to the maximum. Signals
with a maximum intensity of less than twofold above the back-
ground (IOD ¼ 800) were discarded as noise. Hierarchical
clustering of the resulting data set was performed using averaged
linkage method with Pearson correlation coefficient as the simi-
larity metric37, and the results visualized using TreeView software
(http://rana.lbl.gov/EisenSoftware.htm). The clustering was per-
formed unweighted (that is, all enzyme activities receive equal
weight in the computation).

ABPP-MudPITof breast tissue specimens. Membrane proteomes
(B0.5 mg/ml, 0.77 mg total protein per sample) were treated with
FP-biotin (5 mM) for 2 h at 20–25 1C. Proteomes were then
solubilized with 1% Triton X-100 by rotating at 4 1C for 1 h.
Enrichment of FP-labeled proteins was achieved using avidin-
conjugated beads as previously described38 and processed for
MudPIT analysis as described in Supplementary Methods.

cDNA microarray analysis of breast tissue specimens. Gene
expression analysis was performed as described previously24,39

using 42,000-feature cDNA microarrays that contained approxi-
mately 24,000 clones that corresponded to approximately 13,000
distinct Unigene clusters. Detailed protocols are available
(Supplementary Methods and http://www.stanford.edu/group/
sjeffreylab/). A more complete analysis of the cDNA microarray
results will be reported elsewhere.
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