Enzyme activity profiles of the secreted and
membrane proteome that depict cancer

cell invasiveness

Nadim Jessani, Yongsheng Liu, Mark Humphrey, and Benjamin F. Cravatt*

The Skaggs Institute for Chemical Biology and Departments of Cell Biology and Chemistry, The Scripps Research Institute, La Jolla, CA 92037

Edited by James A. Wells, Sunesis Pharmaceuticals, Inc., South San Francisco, CA, and approved June 17, 2002 (received for review March 30, 2002)

By primarily measuring changes in transcript and protein abun-
dance, conventional genomics and proteomics methods may fail to
detect significant posttranslational events that regulate protein
activity and, ultimately, cell behavior. To address these limitations,
activity-based proteomic technologies that measure dynamics in
protein function on a global scale would be of particular value.
Here, we describe the application of a chemical proteomics strat-
egy to quantitatively compare enzyme activities across a panel of
human breast and melanoma cancer cell lines. A global analysis of
the activity, subcellular distribution, and glycosylation state for the
serine hydrolase superfamily resulted in the identification of a
cluster of proteases, lipases, and esterases that distinguished
cancer lines based on tissue of origin. Strikingly, nearly all of these
enzyme activities were down-regulated in the most invasive cancer
lines examined, which instead up-regulated a distinct set of se-
creted and membrane-associated enzyme activities. These inva-
siveness-associated enzymes included urokinase, a secreted serine
protease with a recognized role in tumor progression, and a
membrane-associated hydrolase KIAA1363, for which no previous
link to cancer had been made. Collectively, these results suggest
that invasive cancer cells share discrete proteomic signatures that
are more reflective of their biological phenotype than cellular
heritage, highlighting that a common set of enzymes may support
the progression of tumors from a variety of origins and thus
represent attractive targets for the diagnosis and treatment of
cancer.

n recent years, DNA microarrays have become a standard tool

for the molecular analysis of cancer, providing global profiles
of transcription that reflect the origin (1-3), stage of develop-
ment (4), and drug sensitivity (5) of tumor cells. The ability to
complement these genomic approaches with methods that ana-
lyze the proteome (6, 7) is crucial for the identification and
functional characterization of proteins that support tumorigen-
esis. However, to date, the field of proteomics has had only a
limited impact on cancer research, in large part because of the
myriad technical challenges that accompany the analysis of
complex protein samples (8). For example, conventional pro-
teomics approaches that rely on two-dimensional gel electro-
phoresis encounter difficulty analyzing important fractions of
the proteome, including membrane-associated (9) and low abun-
dance proteins (10). Additionally, most proteomics technologies
are restricted to detecting changes in protein abundance (11),
and therefore, offer only an indirect readout of dynamics in
protein activity. Numerous posttranslational forms of protein
regulation, including those governed by protein—protein inter-
actions, remain undetected. To address these limitations, we
have developed a chemical proteomics strategy referred to as
activity-based protein profiling (ABPP) that allows significant
fractions of the enzyme proteome to be analyzed in an activity-
dependent manner (12). This approach employs chemical probes
that covalently label the active sites of enzyme superfamilies in
a manner that provides a direct readout of changes in catalytic
activity, distinguishing, for example, functional proteases from
their inactive zymogens and/or endogenously inhibited forms
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(12-14). Moreover, by providing a covalent link between the
labeled proteins and a chemical tag, ABPP permits the consol-
idated detection, isolation, and identification of active enzymes
directly from complex proteomes (13).

Here we show that ABPP probes that target the serine hydrolase
superfamily of enzymes generate molecular profiles that classify
human breast and melanoma cancer cell lines into subtypes based
on higher-order cellular properties, including tissue of origin and
state of invasiveness.

Materials and Methods

Preparation of Human Cancer Cell Line Proteomes. All cell lines, with
the exception of MUM-2B and MUM-2C, are part of the NCI60
panel of cancer cell lines and were obtained from the National
Cancer Institute’s Developmental Therapeutics Program. The
MUM-2B and MUM-2C lines were provided by Mary Hendrix.
All cell lines were grown to 80% confluence in RPMI medium
1640 containing 10% FCS and then cultured in serum-free
media for 48 h, after which conditioned media was collected on
ice and the cells were harvested. Conditioned media samples
were centrifuged at 2,400 X g for 5 min, and the protein content
of the supernatant was precipitated with ammonium sulfate
(80%), resuspended in 50 mM Tris-HCI, (pH 7.5; Buffer 1), and
desalted over a PD-10 column (Amersham Pharmacia) to pro-
vide secreted proteome fractions. Cell pellets were sonicated and
Dounce homogenized in Buffer 1 followed by centrifugation at
100,000 X g to provide soluble cellular proteome fractions
(supernatant) and a membrane pellet. Membrane pellets were
homogenized in Buffer 1 with 1% Triton X-100, rotated at 4°C
for 1 h and then centrifuged at 100,000 X g to provide membrane
proteome fractions (supernatant). A typical ratio of 8:2:1 was
observed for the relative quantity of soluble/secreted/
membrane protein isolated for each cell line.

Proteome Labeling and Quantification of Enzyme Activities. Standard
conditions for fluorophosphonate (FP)-proteome reactions
were as follows: proteomes were adjusted to a final protein
concentration of 1 mg/ml in Buffer 1 and treated with 1 or 4 uM
(soluble/membrane and conditioned medium proteomes, re-
spectively) rhodamine-coupled FP (15) for 1 h at room temper-
ature. After labeling, a portion of each proteome sample was
treated with PNGaseF (New England Biolabs) to provide de-
glycosylated proteomes. Where indicated, proteome samples
were preincubated with recombinant plasminogen activator in-
hibitor (PAI)-1 (20 ug/ml; Calbiochem) for 30 min before the
addition of FP-rhodamine. Reactions were quenched with one
volume of standard 2X SDS/PAGE loading buffer (reducing),
separated by SDS/PAGE (10-14% acrylamide), and visualized
in-gel with a Hitachi FMBio Ile flatbed fluorescence scanner
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(MiraiBio) as described (15). Integrated band intensities (nor-
malized for volume) were calculated for the labeled proteins. For
each enzyme activity, 4—6 data points were generated from
independent labeling reactions conducted on 2 or 3 indepen-
dently prepared proteomic samples. These data points were
averaged to provide the level of each enzyme activity in each
cell line. The activity levels of each enzyme were compared
across the cell lines by using the Tukey’s honestly significant
difference test, where P values <0.05 were considered statisti-
cally significant.

Isolation and Identification of FP-Labeled Enzyme Activities. Isolation
of FP-labeled proteins was achieved by using biotinylated FPs
and an avidin-based affinity purification procedure (13). Avidin-
enriched FP-labeled proteins were separated by SDS/PAGE,
and the protein bands were excised and digested with trypsin.
The resulting peptides were analyzed by a combination of matrix
assisted laser desorption mass spectrometry (MS) (Voyager-
Elite time-of-flight MS instrument, PerSeptive Biosystems,
Framingham, MA) and microcapillary liquid chromatography-
electrospray tandem MS [1100 HPLC (Agilent, Palo Alto, CA)
combined with a Finnigan LCQ Deca MS (Thermo Finnigan,
San Jose, CA)]. The MS data were used to search public
databases to identify the FP-labeled proteins as described (13).

Fatty Acid Amide Hydrolase (FAAH) Enzyme Actvity Assays. FAAH
enzyme activity assays were conducted by using “C-oleamide as
a substrate as described (16), with the exception that the
reactions were conducted at pH 8.0.

Cluster Analysis of Proteomic Profiles. Averaged cell line values for
each serine hydrolase activity were compared, with the line that
expressed the highest level of this activity being defined as 100%.
The rest of the cell lines were expressed as a percentage of this
highest activity to normalize the data sets. We then applied a
hierarchical clustering algorithm to the cell lines by average
linkage clustering using the Pearson correlation coefficient as
the measure of similarity (Gene Cluster computer package; ref.
17). Additional cluster analyses were performed on enzyme
activity profiles of the secreted, membrane, and soluble pro-
teomes separately and in all of their respective pair-wise com-
binations. Of these six additional cluster analyses, only the
“membrane + secreted” analysis produced a dendrogram with
increased distances among the three major clusters observed in
the “total” serine hydrolase activity analysis.

Invasion Assays. Cell invasiveness was assessed by using BIO-
COAT matrigel invasion chambers (Becton-Dickinson) accord-
ing to the protocol provided by the manufacturer. Briefly, 1.5 X
10° cells were seeded into each chamber in serum-free condi-
tions, and incubated for 16 h at 37°C, 5% CO,/95% air. Invading
cells on the bottom surface of the membrane insert were fixed,
stained with crystal violet, and counted. Results expressed as
number of invading cells refers to average number of invading
cells per 8 fields counted (n = 3-4 for each cell line).

Results

Activity-Based Profiling of Human Cancer Cell Proteomes. We have
previously described the generation of affinity tagged FPs as
prototype ABPP probes that target the serine hydrolase super-
family of enzymes (12, 13). Considering that serine hydrolases
represent one of the largest and most diverse classes of enzymes
in the human proteome, composing approximately 1% of all
predicted gene products (18, 19), we hypothesized that a com-
prehensive examination of their catalytic activities would yield
proteomic information of sufficient quantity and quality to
portray higher-order cellular properties. To test this hypothesis,
we selected a panel of human cancer cell lines for comparative

10336 | www.pnas.org/cgi/doi/10.1073/pnas.162187599

analysis by ABPP based on the following criteria: (i) they exhibit
a diverse range of well characterized cellular properties, includ-
ing differences in hormone responsiveness, invasiveness, and
metastatic potential; (i) they represent multiple lines derived
from at least two distinct types of cancer, and therefore permit
the comparison of proteomic expression patterns both within
and between cancer classes; and (iif) they have previously been
analyzed with gene expression microarrays, and therefore allow
for a comparison between proteomic data and trancriptional
profiles (2, 3, 5). To profile serine hydrolase activities in the
context of their subcellular localization, proteomes from each
cell line were separated into three fractions (secreted, mem-
brane, and soluble) before treatment with a rhodamine-tagged
FP probe (15). Fluorescently labeled proteins were then sepa-
rated by SDS/PAGE and visualized in-gel by using a flatbed
laser-induced fluorescence scanner. Integrated band intensities
for each identified enzyme activity were averaged from 4-6
proteomic samples to provide the results presented in Figs. 1-4
(complete results are provided in bar graphs, which are pub-
lished as supporting information on the PNAS web site, www-
.pnas.org). In parallel experiments, biotinylated FP probes were
used to affinity isolate the active enzymes, which allowed for
their molecular identification by mass spectrometry methods.

Serine Hydrolase Activity Profiles of the Secreted Proteomes of
Human Breast and Melanoma Cancer Cells. Fig. 1.4 shows a repre-
sentative in-gel fluorescence analysis of the secreted serine
hydrolase activity profiles of human cancer cell lines. Initial
profiles revealed that several enzyme activities migrated as faint,
diffuse bands, suggesting that they existed in a highly glycosy-
lated state. Therefore, a portion of each FP-labeled proteome
was deglycosylated before separation by SDS/PAGE, resulting
in a striking increase in the resolution of these proteins [for
example, see sialic acid 9-O-acetylesterase (SAE); Fig. 1B]. Most
of the secreted serine hydrolase activities exhibited a restricted
pattern of distribution among the human cancer lines. For
example, three secreted enzyme activities, SAE, butyrylcholines-
terase, and cathepsin A, were up-regulated in most melanoma
lines relative to breast carcinomas. Notably, however, the estro-
gen receptor negative [ER(—)] breast line MDA-MB-435 se-
creted high levels of these activities (Fig. 14). Interestingly, a
recent cDNA microarray analysis revealed that the transcrip-
tional profile of the MDA-MB-435 line more closely resembled
those of melanoma cells than breast carcinoma cells, suggesting
that this line may be misclassified (2). Thus, several secreted
serine hydrolase activities were identified that appeared to
represent markers for cells of melanoma origin. It was therefore
surprising to observe that all of these proteins were dramatically
down-regulated in the highly invasive melanoma line, MUM-2B.
Instead, MUM-2B cells secreted high levels of active urokinase
and esterase D, two serine hydrolases that were also up-
regulated in other aggressive lines examined, including the
ER(—) breast carcinoma MDA-MB-231 and the multidrug-
resistant NCI/ADR line.

Identification of Posttranslationally Regulated Serine Proteases. The
identification of active urokinase in several invasive cancer lines
was intriguing considering that this serine protease is an estab-
lished marker of human cancer progression in vivo (20). How-
ever, a major open question regarding urokinase is the degree to
which its mRNA and/or protein levels in tumor samples reflect
the state of activity of the protein. Urokinase activity is regulated
by a host of posttranslational mechanisms including zymogen
processing and interactions with multiple endogenous inhibitory
proteins (PAI-1, PAI-2, maspin, myoepithelium-derived serine
proteinase inhibitor), that also have perceived roles in tumori-
genesis (21-25). With these factors in mind, it is noteworthy that
urokinase mRNA levels failed to directly correlate with uro-
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Serine hydrolase activity profiles of the secreted proteomes of human cancer cell lines. (A) Representative in-gel fluorescence analysis of secreted serine

hydrolase activity profiles obtained from reactions between cancer cell line conditioned media and a rhodamine-tagged FP. Enzyme activities are identified on
either side of the gel (arrowheads point to the deglycosylated form of each enzyme; see Fig. 3A for complete names of proteins). Deglycosylation was
accomplished by treatment of a portion of the FP-labeled proteomes with PNGaseF before analysis. APH* refers to acyl peptide hydrolase, a cytosolic protein
detected in the conditioned media. (B) Expanded view of FP-labeled secreted MDA-MB-435 proteome highlights the increased resolution that is achieved for
highly glycosylated enzyme activities (e.g., SAE) after treatment with PNGaseF. (C) Levels of active urokinase secreted by cancer cell lines as measured by ABPP
(left panel) and urokinase mRNA levels as measured by Northern analysis (n = 3 or 4). mRNA levels are expressed in arbitrary units relative to an internal control.
(D) Inhibition of urokinase (uPA) activity by PA-I. Pretreatment of each proteome with PA-1 (20 ng/ml) blocked the labeling of uPA by FP-rhodamine, but did not

affect the labeling of other serine proteases (e.g., Comp 1s and cat. A).

kinase activity in the cancer lines examined. Whereas approxi-
mately equal levels of active urokinase were observed in the
NCI/ADR, MDA-MB-231, and MUM-2B lines (Fig. 1C Left),
1.5- and 3-fold more urokinase transcript were observed in the
latter two lines (Fig. 1C Right), respectively, suggesting that
posttranscriptional events regulated urokinase activity in these
cells. To confirm that ABPP probes could detect shifts in the
balance of proteases and their endogenous regulatory proteins,
excess PAI-1 was applied to each secreted proteome before
treatment with FP-rhodamine. The addition of PAI-1 blocked
more than 85% of the observed urokinase activity in each of the
cancer lines without affecting the activity of other proteases (Fig.
1D; PAI-1 inhibition of urokinase activity: MDA-MB-231, 95%
+ 3%; NCI/ADR, 88% * 4%, MUM-2B, 98% * 1%;n = 3 or
4 per cell line). Collectively, these findings underscore the value
of activity-based proteomics methodologies that can measure the
functional outcome of posttranslational events that regulate
enzyme activity in vivo.

Serine Hydrolase Activity Profiles of the Membrane and Soluble
Proteomes of Human Cancer Cells. Several membrane-associated
serine hydrolase activities also exhibited restricted patterns of
distribution across the cancer lines (Fig. 24). Notably, the
integral membrane enzyme, FAAH, was detected exclusively in
the poorly invasive breast cancer lines MCF7 and T-47D. The
graded distribution of FAAH among breast cancer lines was
used as a model to test the accuracy and sensitivity with which
ABPP could measure moderate as well as extreme differences in
enzyme activity. FAAH activity was estimated by ABBP to be
2.5-fold higher in MCF7 cells relative to T-47D cells (Fig. 2B
Left), and a nearly identical ratio was calculated with assays using
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the radiolabeled FAAH subtrate “C-oleamide (FAAHwmcr7/
FAAHT.47p = 2.6; Fig. 2B Right). Taking into account the kca
of FAAH for oleamide (approximately 2 s~! at pH 8.0; ref. 26)
and the amount of total membrane protein loaded in each gel
lane (15 ng), we estimate that the fluorescent signal observed for
FAAH in the T-47D membrane protein sample corresponded to
approximately 600 pg of active protein, or less than 0.0005% of
the total T-47D cell proteome. This measure of FAAH protein
matched closely the value calculated by comparing the T-47D
FAAH signal to signals of a serial dilution of purified FAAH
protein labeled to completion with FP-rhodamine (800 pg; data
not shown). These findings highlight that ABPP methods can
detect changes in enzyme activity with a level of accuracy and
sensitivity compatible with profiling low abundance proteins in
complex proteomes.

A second membrane-associated serine hydrolase activity,
protein KIAA1363, displayed a cellular expression profile
similar to that of uPA, being strongly up-regulated in both
invasive melanoma (MUM-2B) and breast carcinoma (MDA-
MB-231) lines. Interestingly, this enzyme was found to exist in
two discrete glycosylation states that were themselves differ-
entially expressed among the cancer lines. For example, the
ratios of the upper to lower glycosylated forms of KIAA1363
were inversely related in the MDA-MB-231 and MDA-MB-435
lines (Fig. 2C).

In contrast to the diverse patterns of enzyme activity observed
in the secreted and membrane proteomes of the cancer cell lines,
the activity profiles of the soluble proteomes appeared quite
similar, with few enzymes exhibiting restricted patterns of dis-
tribution (see Fig. 5 and bar graphs).
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Fig. 2. Serine hydrolase activity profiles of the membrane proteomes of human cancer cell lines. (A) Representative in-gel fluorescence analyses of the serine
hydrolase activity profiles of cancer cell membrane proteomes. Enzyme activities are identified on either side of the gels (arrowheads point to the deglycosylated
form of each enzyme; see Fig. 3A for full names of proteins). Proteins marked with an asterisk represent soluble hydrolases also detected in the membrane
proteome. DG, deglycosylated. (B) The activity of FAAH in breast cancer membranes as measured by ABPP (Left) and FAAH substrate (Right) assays. (C) Relative
activity levels for upper and lower glycosylated forms of the membrane hydrolase KIAA1363 in MDA-MB-231 and MDA-MB-435 lines. Shown are a representative
in-gel fluorescence analysis (Left) and the ratio of upper to lower glycosylated forms, expressed as ratio-1 (Right).
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Classification of Human Cancer Cells Based on Serine Hydrolase
Activity Profiles. Serine hydrolase activity profiles of the secreted,
membrane, and soluble proteomes for each cancer cell line were
merged and the resulting data sets analyzed with a hierachical
clustering algorithm and a psuedo-color visualization matrix
(Fig. 34) (17). Cancer cell lines were found to segregate into
three major clusters that could be generally described as follows:
a melanoma cluster (UACC-62, MDA-MB-435, SK-MEL-2,
M14-MEL, MUM-2C), a breast carcinoma cluster (T-47D,
MCF?7), and an invasive cancer cluster (MDA-MB-231, MUM-

2B, NCI/ADR). Notably, the presence of the ER(—) breast
cancer line MDA-MB-435 in the melanoma cluster provides the
first proteomic support for the recent transcriptome-based
hypothesis that this cell line may represent a misclassified
melanoma line (2).

To understand the features of the enzyme activity profiles
responsible for both origin-driven and phenotype-driven classi-
fications, we performed additional cluster analyses in which
enzyme activities from different subcellular fractions were sep-
arately examined. Strikingly, nearly all of the serine hydrolase
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Fig.3. Cluster analysis of the serine hydrolase activity profiles of human cancer cell lines. (A-C) A hierarchical clustering algorithm was applied to the cell lines
by average linkage clustering using the Pearson correlation coefficient as the measure of similarity (CLUSTER computer package). Bars to the left of the
dendrograms representsimilarity scores. Shown are the results of cluster analyses conducted on total (A), membrane/secreted (B), and soluble (C) serine hydrolase
activity profiles. The intensity of blue color scales directly with the relative activity of each hydrolase among the cell lines (0-100%, where for each enzyme, 100%
represents the cell line with the highest activity, and the rest of the cell lines are expressed as a percentage of this highest activity to normalize the data sets).
Gray, not measured. Red, breast cancer lines. Green, melanoma cancer lines. Black, NCI/ADR is of unknown origin.
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activities that contributed to the observed classifications were
found to reside in the secreted and membrane proteomes (Fig.
3B). In contrast, serine hydrolase activities from the soluble
proteome mostly antagonized the observed classifications, pos-
sibly reflecting the presence of many broadly expressed “house-
keeping” enzymes in this proteomic fraction (Fig. 3C). Several
secreted and membrane-associated enzyme activities were ex-
pressed selectively by either breast carcinomas (e.g., FAAH,
angiotensinase C) or melanomas (e.g., butyrylcholinesterase,
cathepsin A, PPT2, SAE), providing a driving force for the
origin-based clusters (Fig. 3B). However, the majority of these
enzymes activities were strongly down-regulated in the invasive
melanoma and breast carcinoma lines, MUM-2B and MDA-
MB-231, respectively, which instead up-regulated a distinct set of
secreted and membrane-associated enzyme activities (Fig. 3B)
that included urokinase, a serine protease with a well-
characterized association with tumorigenesis (20, 21), and the
novel membrane-associated enzyme KIAA1363.

Characterization of a Membrane-Associated Serine Hydrolase KIAA1363
as a Marker for Cancer Cell Invasiveness. The up-regulation of
KIAA1363 in invasive cancer lines suggested that this enzyme
may represent a new marker of tumor progression. Consistent
with this notion, database searches revealed that the gene
encoding KIAA1363 localizes to 3q26, a chromosomal region
highly amplified in a variety of malignant cancers (27), including
nearly 50% of advanced stage ovarian tumors (28). To further
explore the relationship between KIAA1363 activity and cancer
cell invasiveness, we determined the levels of activity of this
enzyme across a panel of human ovarian cancer lines and
correlated these values with measurements of invasiveness. We
selected for analysis a group of four ovarian carcinoma lines that,
despite forming a discrete cluster based on global gene expres-
sion profiles (2), were otherwise relatively uncharacterized in
terms of their cell biological properties, including invasiveness.
The strong positive correlation that we observed between the
levels of active KIAA1363 and cell invasiveness in breast carci-
noma (Fig. 44) and melanoma (Fig. 4B) lines directly extended
to the ovarian carcinoma lines (Fig. 4C). Specifically, the two
ovarian carcinoma lines that displayed high invasiveness
(OVCAR-5, SKOV-3) were found to exhibit 5- to 25-fold higher
levels of active KIAA1363 than the two noninvasive ovarian
carcinoma lines (OVCAR-3, OVCAR-4). Thus, activity levels of
the novel membrane-associated enzyme KIAA1363 correlated
with pronounced differences in the invasiveness of cell lines
derived from three distinct types of cancer, even in a case where
this cellular phenotype was not reflected at the level of global
gene expression profiles.

Discussion

Here, we have shown that a proteome-wide analysis of variations
in serine hydrolase activity permits the classification of human
cancer lines into functional subtypes based on tissue of origin and
state of invasiveness. Considering that most of the enzyme
activities that contributed to the observed classifications resided
in the secreted and membrane proteomes, we speculate that
these cellular fractions may contain molecular markers espe-
cially representative of differences in cancer cell behavior.
Furthermore, many of the secreted and membrane-associated
enzymes were posttranslationally modified not only by glycosyl-
ation, but also by processing, as at least four enzymes, comple-
ment 1s protease, cathepsin A, urokinase, and SAE, were
detected as single molecular species with masses 10-20 kDa
lower than that predicted from their ORFs. The identification of
SAE as an FP-reactive protein was particularly noteworthy given
that this enzyme has not been classified in public databases as a
serine hydrolase and shares no discernible sequence homology
to any other functionally characterized protein. The reactivity of
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SAE with FP-rhodamine, coupled with the enzyme’s ability to
hydrolyze esterified sialic acid groups (29), suggests that the
protein may be a member of the serine hydrolase superfamily. If
confirmed, this finding would indicate that even for intensively
studied enzyme classes like the serine hydrolases, unrecognized
members may exist in the human proteome that resist classifi-
cation by primary sequence alignment.

The surprising finding that highly invasive cancer cells dis-
played secreted/membrane serine hydrolase activity profiles
nearly orthogonal to those displayed by their less aggressive
counterparts suggests that invasive cancers may share proteomic
signatures that are more reflective of their cellular phenotype
than tissue of origin. These results lend support to the hypothesis
that the advancement of cancers from a variety of origins may be
accompanied by reversion to a common pluripotent embryonic-
like state (30). Accordingly, enzyme activities, like KIAA1363,
that are consistently up-regulated in invasive cancer lines derived
from several different tumor types may represent new bio-
markers and/or targets for the diagnosis and treatment of
cancer. In general support of this notion, uPA, the enzyme
activity that displayed the most similar profile to KIAA1363, is
awell-established marker of tumor metastasis in vivo (20, 21) and
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a current target for multiple cancer drug development programs
(31). Additionally, the localization of the KIAA1363 gene to
3q26, a chromosomal region highly amplified in a variety of
cancers (27), including many advanced-staged ovarian tumors
(28), supports a potential relationship between the overexpres-
sion of this enzyme and tumorigenesis. Nonetheless, specific
antibodies and/or inhibitors of KIAA1363 will likely be required
to validate whether this enzyme is associated with, or plays a role
in, supporting cancer invasiveness in vivo.

In summary, these studies highlight that proteomic ap-
proaches, like ABPP, that can analyze technically challenging
fractions of the proteome (e.g., membrane, glycosylated, and low
abundance proteins) are capable of generating molecular pro-
files that accurately depict higher-order cellular properties.
Moreover, because ABPP measures changes in enzyme activity
rather than enzyme abundance, this method can detect in
complex proteomes the functional outcome of a network of
potential protease-protease inhibitor interactions, like the uPA-
PAI-1 system, that may be critically important for cancer biology
and other complex cellular processes. Finally, ABPP is a rapid
and sensitive method for the comparative characterization of
large numbers of proteomic samples, meaning that numerous
cell types under a variety of experimental conditions can be
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analyzed in parallel, thereby accelerating the discovery of novel
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